
Rhpc: An R Package for High Performance Computing
Ei-ji NAKAMA and Junji NAKANO

COM-ONE Ltd., Japan and The Institute of Statistical Mathematics, Japan

at SC13 on 17-22 November 2013, Denver, Colorado, USA

Introduction

R is a widely used free software environment for statistical computing and graphics. Recently, high
performance computing (HPC) using R easily and efficiently is strongly required. To realize it in a
better way, we provide a new R package for efficient computing using MPI.

Existing parallel environments of R for HPC

• snow

The snow (Simple Network of Workstations) package by Tierney et al. can use PVM, MPI,
NWS as well as direct networking sockets. As it is implemented mainly in R language, it has
some inefficiency.

•Rmpi

The Rmpi package offers access to numerous functions of MPI API, and a number of R-specific
extensions. However, it is difficult to use for novice HPC users.

•multicore

The multicore package provides a way of running parallel computations in R on just one
machine with multiple cores by using operating system functions.

Objectives of Rhpc

Data has become very huge in amount and complicated in structure. To manipulate such data,
parallel computing is the most useful tool at present. Although R has several packages for parallel
computing as above, they are not well optimized for supercomputers.
We hope to improve the functionality and efficiency of the existing parallel computing functions
mainly for supercomputers.

Overview of Rhpc

In Rhpc , we use MPI without using Rmpi and utilize collective communication as much as
possible. Worker process is written by Embedding R. Main functions are:

• Rhpc worker call (∼ snow::clusterCall)

• Rhpc lapply (∼ snow::clusterApply)

• Rhpc lapplyLB (∼ snow::clusterApplyLB)

Behavior of main Rhpc functions

Fig 1: Rhpc worker call

Fig 2: Rhpc lapply

Fig 3: Rhpc lapplyLB

Rhpc primitive functions

• Client initialization and finalization functions

– Rhpc initialize()

– Rhpc finalize()

•Handle function

– Rhpc getHandle([NumberOfWorkers])

• Instructions function for workers

– Rhpc worker call(handle,fun,...)

• Parallel applying function

– Rhpc lapply(handle,fun,...)

– Rhpc lapplyLB(handle,fun,...)

Rhpc miscellaneous functions

•Rhpc worker call functions

– Rhpc setupRNG(handle, seed)

– Rhpc Export(handle, names)

– Rhpc EvalQ(handle, expr)

RhpcBLASctl miscellaneous functions

Control number of threads for R

• Control the number of threads for BLAS, MKL, ACML
and GotoBLAS etc.

– blas get num procs()

– blas set num threads(threads)

• Control the number of threads for OpenMP

– omp get num procs()

– omp get max threads()

– omp set num threads(threads)

Examples on supercomputer

Export performance

0 10 20 30 40 50 60

0
10

20
30

Export performance on supercomputer

Number of CPUS

se
c

Rhpc::Rhpc_Export
snow::clusterExport

Listing 1: Rhpc Export
> library(Rhpc)

Loading required package: rlecuyer

> Rhpc_initialize()

> cl<-Rhpc_getHandle()

Detected communication size 64

> set.seed(123)

> N<-4e3

> Rhpc_numberOfWorker(cl)

[1] 63

> M<-matrix(runif(N^2),N,N)

> system.time(Rhpc_Export(cl,"M"))

user system elapsed

1.012 0.116 1.139

> f<-function()sum(M)

> all.equal(rep(sum(M), Rhpc_numberOfWorker(cl)),

unlist(Rhpc_worker_call(cl,f)))

[1] TRUE

> Rhpc_finalize()

>

>

> proc.time()

user system elapsed

15.559 0.281 16.452

As clusterCall of snow starts workers sequen-
tially, it becomes slow when the number of work-
ers increases. As Rhpc uses collective commu-
nication by MPI Bcast, data transportation to
workers is still fast even when the number of
workers increases.

SQRT performance

0 10 20 30 40 50 60

0
1

2
3

4

SQRT−Apply performance on supercomputer

Number of CPUS

se
c

Rhpc::Rhpc_lapply
Rhpc::Rhpc_lapplyLB
snow::clusterApply
snow::clusterApplyLB

Listing 2: Rhpc lapply
> library(Rhpc)

Loading required package: rlecuyer

> Rhpc_initialize()

> cl<-Rhpc_getHandle()

Detected communication size 64

> system.time(

+ ans<-Rhpc_lapply(cl, 1:10000, sqrt))

user system elapsed

0.045 0.001 0.046

> all.equal(sqrt(1:10000),unlist(ans))

[1] TRUE

> Rhpc_finalize()

Listing 3: Rhpc lapplyLB
> library(Rhpc)

Loading required package: rlecuyer

> Rhpc_initialize()

> cl<-Rhpc_getHandle()

Detected communication size 64

> system.time(

+ ans<-Rhpc_lapplyLB(cl, 1:10000, sqrt))

user system elapsed

0.125 0.001 0.127

> all.equal(sqrt(1:10000),unlist(ans))

[1] TRUE

> Rhpc_finalize()

snow and Rmpi are largely written in R lan-
guage, and are rather slow. As the main part
of Rhpc is written in C language, it is efficient.

TWIX performance

2 4 6 8 10 12

20
30

40
50

60

TWIX performance on supercomputer

Number of CPUS

se
c

non parallel
Rhpc
snow(MPI)

Listing 4: TWIX using parallel computing
> library(TWIX)

> r<-read.csv("http://archive.ics.uci.edu/ml/machine-

learning-databases/wine-quality/winequality-red.csv

",sep=";")

> w<-read.csv("http://archive.ics.uci.edu/ml/machine-

learning-databases/wine-quality/winequality-white.

csv",sep=";")

> x<-rbind(r,w)

> x$quality=factor(x$quality)

> set.seed(123)

> i <- sample(nrow(x),nrow(x)/4)

> ic <- setdiff(1:nrow(x),i)

> training <- x[ic,]

> test <- x[i,]

>

> library(Rhpc)

Loading required package: rlecuyer

> Rhpc_initialize()

> cl<-Rhpc_getHandle()

Detected communication size 12

> system.time(TWIX(quality~. ,data=training[,1:12],

+ topN=c(12,12), method="local",

+ cluster=cl))

n = 1685

Deviance gain and TIC of the best TWIX-tree: 645.3553

0.7482044

Deviance gain and TIC of the greedy tree(Nr.1116):

849.0834 0.7297353

user system elapsed

19.444 0.082 19.534

> Rhpc_finalize()

TWIX is a binary-split decision tree algorithm
for classification and data mining developed by
Sergej Potapov, Martin Theus and Simon Ur-
banek. It has snow and multicore codes, and
just small changes are required for Rhpc.

Example on personal cluster

SQRT performance

2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

SQRT on Apply performance

Number of CPUS

se
c

Rhpc::Rhpc_lapplyLB
Rhpc::Rhpc_lapply
snow(TYPE=MPI)::clusterApplyLB
snow(TYPE=SOCK)::clusterApplyLB

snow(TYPE=MPI)::clusterApply
snow(TYPE=SOCK)::clusterApply
multicore::mclapply
Rmpi::mpi.applyLB

Listing 5: Rhpc lapply
> library(Rhpc)

Loading required package: rlecuyer

> Rhpc_initialize()

> cl<-Rhpc_getHandle(as.integer(Sys.getenv("NPROCS"))-1)

> system.time(ans<-Rhpc_lapply(cl, 1:10000, sqrt))

user system elapsed

0.036 0.004 0.038

> all.equal(sqrt(1:10000),unlist(ans))

[1] TRUE

> Rhpc_finalize()

>

> proc.time()

user system elapsed

0.620 2.020 2.648

At present, Rhpc is a little slower than multicore.

